报告题目: Why spectral methods are preferred in PDE eigenvalue computations
in some cases?
报告人: 张智民 教授
报告时间:2018年5月18日下午4:30--5:30
报告地点:数统院307报告室
数学与统计学院
2018.5.17
摘要: When approximating PDE eigenvalue problems by numerical methods such as finite difference and finite element, it is common
knowledge that only a small portion of numerical eigenvalues are reliable. As a comparison, spectral methods may perform extremely well in some situation, especially for 1-D problems. In addition, we demonstrate that spectral methods can outperform traditional methods and the state-of-the-art method in 2-D problems even with singularities.
报告人简介: 张智民,教授,北京科学计算研究中心应用与计算数学研究部主任。先后在美国德州理工大学(Texas Tech University)任客座助理教授(1991)、助理教授(1993)、副教授(1997),美国韦恩州立大学(Wayne State University)副教授(1999)、正教授(2002)、湖南师范大学潇湘学者特聘教授(2003-2009),2010年荣获教育部“长江学者”讲座教授(中山大学),2013年入选“千人计划”。曾任Mathematics of Computation等7个国际计算数学杂志编委。发表SCI杂志学术论文 130 余篇,在国际学术会议大学报告包括世界华人数学家大会上做45分钟邀请报告(2010),Ivo Babuska 90th生日学术会议12个报告人之一(2016,University of Texas at Austin).