首页

学术报告

当前位置: 首页 >> 正文

微分方程与动力系统系列报告:Some progress on Leray problem for flows in an infinitely long nozzle

发布人:日期:2021年12月29日 08:28浏览数:

        报告人:谢春景 教授(上海交通大学)

        时 间:2021年12月20日上午10:30开始

        地 点:腾讯线上会议号:161 186 240


报告摘要In this talk, we discuss the recent progress on Leray problem for incompressible Navier-Stokes system in an infinitely long nozzle. The key problem is to study the uniqueness and uniform structural stability of Poiseuille flows in a pipe under no slip boundary conditions or Navier boundary conditions. It is interesting that the estimate is uniform with respect to the fluxes of the flows and even the slip coefficients in the Navier boundary conditions. One of the key ingredients of the analysis is to deal with the case with large flux and intermediate frequency in terms of the Fourier variable.


报告人简介谢春景,上海交通大学教授,2007年博士毕业于香港中文大学,在2011年加入上海交通大学之前,在香港中文大学和密西根大学做博士后。研究兴趣集中于高维流体动力学方程组的适定性研究,特别是Euler方程组及其相关模型的亚音速解与跨音速解问题,高维Euler方程组弱解的不唯一性、以及管道中定常Navier-Stokes方程组的适定性等。在Advances in Mathematics, Archive for Rational Mechanics and Analysis, Communications in Mathematical Physics等杂志发表多篇论文















上一条:概率统计系列报告:The normalized expectation-maximization (N-EM) algorithm (正则化的EM算法)

下一条:组合与运筹系列报告

【关闭】 打印    收藏