报告题目:Density Hajnal-Szemerédi theorem for cliques of size four
报 告 人:侯建锋 教授
报告时间:2025年5月13日(周二)19:00-20:00
报告地点:腾讯会议(954-435-876)
报告摘要:
The celebrated Corrádi-Hajnal theorem and the Hajnal-Szemerédi theorem determined the exact minimum degree thresholds for a graph on vertices to contain vertex-disjoint copies of , for and general , respectively. The edge density version of the Corrádi-Hajnal theorem was established by Allen-Böttcher-Hladký-Piguet for large . Remarkably, they determined the four classes of extremal constructions corresponding to different intervals of . They further proposed the natural problem of establishing a density version of the Hajnal-Szemerédi theorem: For , what is the edge density threshold that guarantees a graph on vertices contains vertex-disjoint copies of for . They also remarked, “We are not even sure what the complete family of extremal graphs should be.”
We take the first step toward this problem by determining asymptotically the five classes of extremal constructions for . Furthermore, we propose a candidate set comprising classes of extremal constructions for general .
报告人简介:
侯建锋,福州大学教授,博士生导师。2009年7月毕业于山东大学数学学院,获理学博士学位。2011年度全国优秀博士学位论文提名奖,2011年度福建省自然科学基金杰出青年项目获得者,2020年入选福建省“雏鹰计划”青年拔尖人次,2021年入选青年长江学者计划,主持国家重点研发课题1项,国家自然科学基金4项,参与重点项目1项,主要从事图论及其应用研究,发表论文60余篇。中国数学会组合数学与图论专业委员会秘书长,中国工业与应用数学学会图论组合及应用专业委员会常务委员。