报告题目: Matching extension of 1-embeddable graphs in surfaces
报 告 人: 张和平 教授
报告时间: 2025年 11月 27(周四下午)15:00-17:00
报告地点: 腾讯会议(767-629-381)
报告摘要:Let G be a connected graph with at least 2(m+n+1) vertices that contains a perfect matching. Then G satisfies property E(m, n) if for each pair of disjoint matchings M, N of size m and n, respectively, there exists a perfect matching F in G such that F contains M and F is disjoint with N. In particular, a graph with E(n,0) is so-called n-extendable graph. A graph G is 1-embeddable in a surface Ʃ if G can be drawn in Ʃ so that every edge of G crosses at most one other edge. In this talk we will introduce some restricted matching extension of graphs in surfaces, and 1-embeddable graphs in surfaces of small genus. In particular we present the following new results: no 1-embeddable graphs in the plane or projective plane is E(4, 1) and no 1-embeddable graph in the torus or Klein bottle is E(5, 1), which imply that no 1-embeddable graph in the plane or projective plane is 5-extendable and no 1-embeddable graph in the torus or Klein bottle is 6-extendable. Some examples show that such results are best possible.
报告人简介:兰州大学数学与统计学院教授(二级)、博士生导师。1994年获四川大学博士学位,1999年晋升教授,2001年任博士生导师,2001年获教育部“第三届高校青年教师奖”,2002年获国务院颁发的政府特殊津贴,2009年入选甘肃省领军人才,2014年当选国际数学化学科学院成员(Member of the International Academy of Mathematical Chemistry)。现任中国组合数学与图论学会常务理事。主要从事图的匹配理论、化学图论等方向的研究,发表了200余篇SCI 收录学术论文,主持了国家自然科学基金项目8项,包括重点项目“应用图论”。曾在香港浸会大学,法国巴黎南大学,澳大利亚Newcastle大学,美国中田纳西州立大学,台湾中研院数学所学术访问。
学校首页
设为收藏