李雪梅

发布人:日期:2023年03月08日 16:05浏览数:


李雪梅,女,博士,教授,博士生导师

教育背景:

1980.09-1983.06  益阳师专     数学教育

1985.09-1988.06  内蒙古大学   基础数学硕士

1999.09-2002.07  湖南大学    应用数学博士

工作经历:

1987.07-1989.08     湖南师范大学   助教

1989.09-2000.08 湖南师范大学   讲师

2000.09-2006.08 湖南师范大学   副教授

2006.09-现 在   湖南师范大学   教授

2006.04-2006.06 中科院数学与系统科学科学院  访问学者

2008.10-2008.12 西班牙CRM研究所         访问教授

2008.04-2009.04 美国德州大学奥斯汀分校     访问学者

2010.06-2010.08 复旦大学              访问教授

2014.06-2014.08 中科院数学与系统科学科学院  访问教授

教学育人:

主讲课程:

本科生:数学分析、实变函数、泛函分析、常微分方程、高等数学。

研究生:泛函微分方程、神经网络动力系统、泛函分析、经典力学的数学方法、天体力学讲义、微分动力系统。

科学研究:

研究领域:常微分方程与动力系统。主要从事常微分方程和时滞微分方程拟周期解(不变环面)的存在性与正则性、分支理论和人工神经网络的动力学性质等方面的研究,在JDE、JDDEDCDS等刊物上发表论文40余篇。

主持科研项目(部分):

  1. 国家自然科学基金,连续动力系统中与拟周期不变环面相关的分支问题研究,NO:1197116352万元,2020.01-2023.12

  2. 国家自然科学基金,泛函微分方程中小分母问题的研究,NO:1137113256万元,2014.01-2017.12

  3. 国家自然科学基金,动力系统的分支和混沌及其在神经网络中的应用,NO:1107106628万元,2011.01-2013.12

  4. 国家自然科学基金,细胞神经网络的完全稳定性及其在图像处理中的应用,NO:6067106618万元,2007.01-2009.12

论文(部分):

  1. Xuemei Li, Shujuan Liu, The relation between the size of perturbations and the dimension of tori in an infinite-dimensional KAM theorem of Poschel, Nonlinear Analysis 197, 111754(22pages), 2020

  2. Fang Wu, Xuemei Li, Double Hopf bifurcation and the existence of quasi-Periodic invariant tori in a generalized Gopalsamy delayed neural network model, International Journal of Bifurcation and Chaos, 29(13)1950182 (17 pages), 2019

  3. Xuemei Li, Zaijiu Shang, On the existence of invariant tori in non-conservative dynamical systems with degeneracy and finite differentiability, Discrete Cont. Dyn. Syst-A, 39:4225-4257, 2019

  4. Xuemei Li, Zaijiu Shang, Quasi-periodic solutions for differential equations with an elliptic-type degenerate equilibrium point under small perturbations, Journal of Dynamics and Differential Equations, 31:653-681, 2019

  5. Xuemei Li, On the persistence of quasi-periodic invariant tori for double Hopf bifurcation of vector fields, J. Differential Equations, 260:7320-7357, 2016

  6. Lin Lu, Xuemei Li, Existence of quasi-periodic solutions of fast excited van der Pol-Mathieu- Duffing equation, J. Math. Phy., 56(12):1227031-18, 2015

  7. Xuemei Li, Xiaoping Yuan, Quasi-periodic solutions for perturbed autonomous delay differential equations, J. Differential Equations, 252:3752-3796, 2012

  8. Xuemei Li, Rafael de la Llave, Convergence of differentiable functions on closed sets and remarks on the proofs of the “converse approximation lemmas”, Discrete Cont. Dyn. Syst-S, 3:623-641, 2010

  9. Xuemei Li, Rafael de la Llave, Construction of quasi-periodic solutions of delay differential equations via KAM techniques, J.Differential Equations, 247:822-865, 2009

  10. Xuemei Li, Zhaohui Yuan, Existence of periodic solutions and closed invariant curves in a class of discrete-time cellular neural networks, Physica D, 238:1658-1667, 2009

  11. Xuemei Li, Analysis of complete stability for discrete-time cellular neural networks with piecewise linear output functions, Neural Computation, 21:1434-1458, 2009

  12. 黄立宏, 李雪梅, 细胞神经网络动力学,  科学出版社, 2007

  13. Xuemei Li, Lihong Huang, Invariance principle and complete stability for cellular neural networks, IEEE Trans. Circuits Syst. II, 53:202-206, 2006

  14. Xuemei Li, Lihong Huang, Jianhong Wu, A new method of Lyapunov functionals for delayed cellular neural networks, IEEE Trans.Circuits Syst. I, 51(11):2263-2270, 2004

  15. Xuemei Li, Lihong Huang, Jianhong Wu, Further results on the stability of delayed cellular neural networks, IEEE Trans.Circuits Syst. I, 50(9):1239-1242, 2003

  16. Xuemei Li, Lihong Huang, Huiyan Zhu, Global stability of cellular neural networks with constant and variable delays, Nonlinear Analysis, 53(3-4):319-333,2003

联系方式:lixuemei_1@sina.com

上一条:李建利

下一条:罗治国(已退休)

【关闭】 打印    收藏