学术报告
报告题目:Existence, multiplicity, shape and attractivity ofheterogeneous steady states for bistable reaction-diffusion equations in theplane
报告人:易泰山教授(中山大学)
时 间:2019年5月10日下午14:40
地 点:数统院307报告室
数学与统计学院
2019.5.8
报告摘要:We consider a classof bistable reaction-diffusion equations in the plane. First we introduce apartition of the plane into infinitely many sectors and consider Dirichletproblems in these sectors. By establishsome \textit {a priori} estimates for nontrivial solutions to thesesub-systems, we obtain the existence and attractivity of a heterogeneous steady state of the Dirichletproblem in each of the sectors and provethe existence of a maximum positive steady state and describe the asymptoticbehaviours of positive steady states at the infinities. We also estimate$\omega-$limit sets at the vicinities of the boundaries of the sectors nearorigin and at infinities. Further assuming the sub-linearity for the reactionterm, we obtain the uniqueness and attractivity of a heterogeneous steady stateby applying the dynamical and sliding methods. These results help us describethe multiplicity, shape and attractivity of theheterogeneous steady states for the equation.
报告人简介:易泰山,中山大学数学学院(珠海)教授、博士生导师。
1999年和2004 年分别获湖南大学应用数学学士学位和博士学位。2006年9月至2008年8月先后在加拿大西安大略大学、劳瑞尔大学及约克大学做博士后。2005起先后在湖南大学、中南大学、中山大学任教,现为中山大学数学学院(珠海)教授、博士生导师。主要从事泛函微分方程、反应扩散方程、动力系统及其应用方面的研究,已在 SIAM Journal on Mathematical Analysis, Journal of DifferentialEquations, Proc. R. Soc.Lond. Ser. A、J. Dynam.Differential Equations 等国际著名刊物发表论文三十余篇。主持了3 项国家自然科学基金项目和1项湖南省杰出青年基金,2008年入选教育部新世纪优秀人才支持计划。